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We consider the complete system of equations for the dynamics of a synchro- 

nous machine with two windings on the rotor. We indicate the conditions under 

which the original system of equations can be reduced to the equation of mo- 
tion of the rotor. The conditions for rotor selfoscillations to arise are determ- 
ined as a result of investigating this equation. The complete system of equa- 

tions for the dynamics of a synchronous machine containing equations describ- 
ing the electrical responses and equations for the rotor’s mechanical motion 

are obtained in [l]. Transient responses in electric circuits were investigated 
next, as was the expression for the electromechanical moment under a constant 
rotation velocity of a rotor with one circuit, e. g., field winding. However, in 

many of the later works the electrical equations were used only for finding the 
electromechanical moment under a constant spin rate of the rotor, and the prob- 
lem was then reduced to the study of the equation for the rotor’s mechanical 
motion [Z, 31. Here the conditions for which such an analysis is admissible 

were not mentioned. It was established that the swinging of a synchronous 
machine’s rotor can be revealed in the form of selfoscillations. Vlasov [4] 
has investigated the equation of motion of a rotor and, under the assumption 
of a small parameter in the first derivative term, has found the conditions for 
the excitation of selfoscillations. Investigation in this same direction was car- 
ried out in [5]. However, in the investigation of the selfoscillations Vlasov 
did not examine the responses in the electrical circuits, while the expression 
for the electromechanical moment was obtained from power considerations . 
Other works have used particuiar expressions for the electromechanical mo- 
ment, which can not explain the selfoscillation phenomenon. 

1. Equations for rynchronoua mrchine dynamics. The equations 
for the dynamics of a salient-pole synchronous machine with two rotor windings - the 
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field winding and the quadrature damping winding - under the assumption made in [I] 
have the form 

Log,,” + Rq,’ = - u. (1.1) 

L.q,” + L,q,’ cp’ + Mxq,” + M,q,’ cp’ + Rq,’ = - E, 

-. L,q,‘cp’ f L,,q,” - M,q,‘rp’+ Mu q 5’. + Rq,’ = - E‘, 
L,q,” -1 3/2Mxqr’* + Rbq4’ = E, 

L,q5” t_ V2Myqy’* + R,q; = 0 

Jcp” = 3/2 lM,qx’q,’ - Mxqg’q,’ - (Lx - Ly) qx’ qu’] -i- T 

Here cp is the angle between the rotor’s longitudinal axis and the magnetic axis of the 
stator’s first phase, qx’, q,‘are the stator’s longitudinal and transverse currents, q4’, q5’ 
are the currents in the rotor windings, E,, E, are the longitudinal and transverse com- 
pcnents of the circuit voltage applied to the stator, E4 is the excitation e. m. f. (elec- 

tromotive force), L,, L, are the selfinductance coefficients in the machine’s longitu- 
dinal and transverse axes, L4, L, are the self-inductance coefficients in the rotor win- 

dings, M,, M, are the mutual-inductance coefficients of the stator’s phases with the 

rotor windings, R, R4, R, is the active resistance of the stator’s phase and the rotor 
windings, J is the rotor’s moment of inertia, T is the moment of the external mech- 

anical forces applied to the rotor’s shaft. The first equation in system (1.1) describes 
the change in the stator’s null current. The variable q,,’ does not enter into the remain- 
ing equations of system (1.1) ; therefore, we can exclude this equation from further con- 
sideration. 

We introduce the dimensionless parameters and the dimensionless variables 

L4 
%=-j/9 

lllX 

* 
r1= r, no = 

x 

where o1 is the frequency of the external circuit, 8 is the angle between the rotor’s 
transverse axis and the rotating vector of the external circuit’s e. m. f. Then the system 

of equations for the synchronous machine’s transient modes reduces to the dimensionless 
form 

5’ + Ez + h (1 + s) y + yru’ + ys (1 + a), 2, = sin Cl (1.2) 

- (1 + s) 2 + hy’ + Ey - y1 (1 + s) u + yzv’ = - cos 8 

Y~‘x’ + a,u’ + t&u = s y2’y’ + a27Y $- &u = 0 

0’ = s, s’ = To + M&f 

(M = [yzzv - ylyu - (1 - A) syl) 
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Here and subsequently the dot denotes differentiation with respect to the dimensionless 
time -c, and M is the moment of the electromagnetic forces referred to Ma. 

2. Invertlgrtlon of the sxprer~lon for electromechrnfcrl mo- 
ment for L constant rpln rhte of the rotor, For a constant spin rate of 
the rotor the first four equations of system (1.2) form an inhomogeneous system of 

linear differential equations with constant coefficients. The characteristic equation of 

this system satisfies the Routh-Hurwitz conditions when has - ysysO > 0, ol- 

ylylo > 0,which always hold since these expressions are the system’s transverse and 
longitudinal leakage coefficients [l] ; therefore, the system’s natural solutions decay. 
By virtue of this we shall neglect the transient values of the variables when investigat- 

ing the electromechanical moment. The forced solutions of the system (the steady- 
state values of the variables) have the form 

x = z,, y = - zs, a = 23, v = - zq (2.1) 

[a (blj + uzj) - b (ulj - b,J] cos e} + q g (i=l,2,3,4) 

a= Red(p), b= ImA( ukj = ReAk&), bkj = Im Akj(J') 

(p = is, b-l/-l) 

Here A (p) is the determinant of system (1.2), A kj (p) are the minors of the ele- 

ments of determinant A (p). Substituting (2.1) into the expression for M (in paran- 
theses in (1.2))) we obtain the synchronous machine’s moment with s = const 

M = a, (s) q2 + b, (s) + b2 (s) cos 20 + b, (s) sin 20 + 
qcl (s) CQS 8 + qc2 (s) sin 8 

(2.2) 

The quantity M has a constant component and a periodically-varying component. 
Under a synchronous rotation of the rotor (s = 0) the first component called the 

braking torque, has the form 

Ml= al (0) q2 + bl(O) (2.3) 

W (h2 + 4”) 
a1 (0) = - p12(h + 52)” 3 

1 4 (1 -a)2 
h(O) = - 2 (1 + p)2 

The quantity ikf, depends only on the machine’s parameters and is independent of the 

rotor’s position. The braking torque obtains under any mode of operation and opposes 
the rotor’s rotation. It vanishes when there are no ohmic losses in the stator circuit 

(E = 0). 
The second component (the synchronous torque) has the form 

M2 = bz (0) cos 28 + b, (0) sin 28 + qc, (0) cos 8 + qc2 (0)sin 0 (2.4) 
5 (1 - AZ) 

b,(O) = 2 (h + E”)” 7 b, (0) = 
(1 - Q (E” - N 

2 (A + ET 
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The synchronous torque arises as a result of the interaction of the rotor’s constant mag- 
netic field and the stator’s rotating magnetic field. When there is no excitation (VJ = 
0) the synchronous torque is caused by the difference in the inductance along the long- 

itudinal and transverse axes and has the form 

1 
Ms = 2 1--h [(Es-h) (h + 4”)2 sin 20 + E (1 + h) co.9 201 

When the rotor windings have identical inductances along the longitudinal and trans- 

verse axes (h = I), the synchronous torque has the form 

M2 = ,1,1”: 4”) 
[g co.3 8 - sin 61 

When there are no ohmic losses in the stator circuit (E = 0) 

M - i i A’ sin 28 2=-- 
2 h 

- q+-sine 

and if the inductances along the axes are equal (A = I), then only the second term 
in this expression remains. 

The braking torque (2.3) and the synchronous torque (2.4) considered above comple- 
tely determine the machine’s electromechanical moment under a synchronous mode of 

operation (s = 0). These torques agree, as was to be expected, with those obtained in 

[l] for a machine with one winding on the rotor, because under synchronous rotation 
the presence of a damping winding does not affect the electromechanical moment. 

For s # 0, i.e. for an asynchronous rotor spinning, the electromechanical moment 

is of form (2.2). The quantity a, (a) q* + b, (s) in expression (2.2) is the mean 
value of the asynchronous moment over the period of slippage. The asynchronous mo- 

ment is caused by the interaction of the stator’s magnetic field with the field of currents 
induced in the rotor windings. 

let us derive the conditions under which expression (2.2) turns into the well-known 
expressions for the electromechanical moment, which have been used by various authors 

Cl- 3, 6 - 81. We note that the ohmic resistance in the stator circuit is usually neg- 
lected when deriving the formula for the electromechanical moment. Therefore, if we 

set E = 0 in (2.2). we obtain 

a, (s) = 0, Cl (4 = 0, c2 (4 = - Yl / B1 (2.6) 

b (4 = - + [ h2pa2 + $2 ;;;;y__ haa) + 

PfflT1° 

pla + s2 (W1° -.a)2 1 

b3 (s) = - + ;~;~+y(~T~o~~~~ - y2-$:;g2y$?q t 
In the case of identical windings along the rotor’s longitudinal and transverse axes, 

?u = 1, Yl = Y2 = Y, PI = I32 = B, a1 = a2 = a and the electromechanical 
moment has the form [8] 

If in expressions (2.6) we neglect the terms containing s2, considering s to be small, 

then the expression for the electromechanical moment agrees with that obtained in [6]. 
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In the case of identical windings along the rotor axes we obtain the obvious expression 

From (2.6) we can obtain expressions for the coefficients of the electromechanical 
moment in the case when there is one field winding on the rotor. In fact, taking the 

damping winding as open, i. e. setting yz = 0, a2 = 0, we obtain 

In the case of a cylindrical rotor (h = 1) 

(2.7) 

CL 8) 

Expressions (2.7) and (2.8) agree with those obtained in [l]. Thus, Gorev’s moments 
are obtained from (2.2) with E = 0, ~2 = 0, y2 = 0, i.e. for a rotor with one 
winding and with the stator’s ohmic resistance neglected. If in (2.8) we neglect terms 
containing s2, then 

M== ---‘i$&t3--&%(1 -cOS20) (2.9) 

9. Swinging of L tynchronoua mrchine’s roton. The dynamics of a 
synchronous machine is described by the sixth-order system (1.2) of nonlinear differen- 
tial equations, which is considerably difficult to investigate. We indicate below the con- 
ditions under which the motion of a synchronous machine’s rotor can be correctly des- 
cribed by a second-order equation with the use of the expression for the electromecha- 

nical moment, obtained for a constant spin rate of the rotor. These conditions reduce to 

the following : 
1) the largest time constant of the electrical loops is much smaller than the time 

constant of mechanical motion (in general, this is satisfied for small electrical machines); 

2) in the time interval T’, somewhat exceeding the transient time in the elec- 
trical circuits, the spin rate of the rotor s changes little, i. e. T’s’ < 1. 

The second condition signifies that in the time interval T’ the resulting moment of 
the electromagnetic and mechanical forces is not able to make an essential change in 
the angular velocity of the rotor. Then in the time interval T’ we can set s = const 
in the first four equations of system (1.2) and, neglecting the natural solutions (the tran- 
sient values of the variables), find the steady-state values of the currents. Let T” be the 
time during which the mechanical transient response takes place, which is much greater 
than T’ by virtue of the conditions we have adopted. Therefore, the time interval T” 
be divided up into small intervals T’ during each of which the rotor spin rate is con- 
stant. For s = const the electromechanical moment depends only upon the obtained 

stready-state values of the currents. Then in any interval T .> T” > T’ the variation 
of the variables 8 and s can be described by the last two equations of the system (1.2) 
in which the electromechanical moment is determined by expression (2.2) 
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e* = S, 

S* = T,, + al(s) q2 + b, (s) + b, (.s) cos 20 + b, (s) sin 20 + (3.1) 

qc, (.s) cos 0 + qc2 (s) sin 0 

Since when passing from the sixth-order system (1.2) to the second-order system (3.1) 
we assume that the electrical transients go “rapidly” while the mechanical ones (varia- 

tion of 8 and .s) go “slowly”, the reduction of the study of the synchronous machine 

dynamics to the study of a second-order differential equation proves to be correct if 8’ 
is of the same order as s*. But since s varies slowly, i, e. s’ is assumed to be a small 
quantity, the quantity s = 0’ also should be small of the order of s’. 

A stable limit cycle of system (3.1) which includes the equilibrium state, corresponds 
to the selfoscillatory nature of the rotor’s swinging. On the phase cylinder (- x < 
0 < n) system (3.1) has four equilibrium states, coordinates of which are defined by 
the equations s = O 

T, + a,(O) y2 -+ b, (0) + b2 (0) cos 28 + b, (0) sin 20 + 

qc, (0) cos 8 + qc2 (0) sin 8 = 0 
The nature of the equilibrium states depends upon the roots h = llzd f '/2 l/d2 +4C 
of the corresponding characteristic equation, where 

c= - 2bzfO) sin 201 + 2b, (0) cos 2@i - qel(0) sin Oi + T~ZT~ (0) cos fli 
d = al'(O) q2 + b,’ (0) + b,‘(O) cos 201 + F3'(0) sin 20i + 

qCl' (0) COS f3i + r)Cz’(O) sin Oi 

The equilibrium states (02, 0), (El,, 0) are saddles and for them c > 0 ; the equi- 

librium states (4&, 0), (O,, 0) (with c < 0) are nodes if 8 + 4c > 0, and if 
d2 + 4c < 0 , they are foci. The nodes (foci) are stable for d ( 0 and unstable for 
d > 0. The focus becomes a composite one for d = 0 . The linear approximation, 
i.e. the study of the characteristic equation, is not sufficient to ascertain its stability 

and the question can be solved by Liapunov indices which are expressed in terms of the 
coefficients of the nonlinear equations and obtained by discarding all terms of higher 
than third order in the right-hand sides of the original equations. If the Liapunov index 
for the composite equilibrium state is nonzero, then it characterizes the stability of this 

equilibrium state as well as the boundary of the stability region d = 0 [lo], 
An electronic computer was used to find the equilibrium states of system (3.1) and 

to investigate their stability. The change in stability of the equilibrium state (8,, 0) 
as a function of the parameters k = f;, f L,, g (characterizing the ohmic losses in 
the stator curcuit), and To *(the mechanical moment on the rotor shaft) was traced.(The 
parameters h and E occur in the coefficients of system (3.1)). The computations 
were carried out for a, = 1, a2 = 0.5, f& = 5, p2 = 1, p1 = 0.3, y2 = 0.1, 

q = 0.1 (here the synchronous machine has an underexcited magnetic system). Sec- 
tions of the surface d = 0 by the planes h = const in the parameter space (T,, a, 

EJ are shown in Fig. 1 for h = 0.1 (a), h = 0.3 (b), h = 0.5(c). 
For F; = 0 (no ohmic losses in the stator circuit) the equilibrium state &. 0) is 

stable (GE < 0). As E grows the equilibriun state becomes unstable (d > 0) and then 

stable (d < 0) once again. In the first case the Liapunov index is positive, while in the 
second case, negative. Consequently, the stability region boundary d = 0 for the equi- 
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librium state (c)a, 0) consists of two parts. One part of it is “dangerous” (curve 1 ,.Fig. 1). 
Upon intersecting it as E grows,a single unstable limit cycle shrinks to a stable equilib- 

rium state. The equilibrium state becomes unstable. The second part of boundary d = 

Fig. 2 

0 is “Safe” (CtRVe 2,. Fig. 1). Upon intersect- 
ing it as $ decreases, a single stable limit 
cycle emerges from the stable equilibrium 
state, corresponding to a “soft” mode of ex- 
citation of selfoscillations [ 91. The equilibc 
rium state becomes unstable. 

An ap~oximate integration of system 
(3.1) on an electronic computer fll] showed 

that for parameter values close to the “safe” 
part of boundary d = 0 there exists a sta- 
ble limit cycle (Fig. 2) which grows as 8 

decreases and then vanishes. (The nature of 
the cycle’s disappearance was not investiga- 
ted). The equilibrium state (0,, 0) also 
changes stability twice as E grows. With an 

increase in 5 or T, the foci (0,, 0) and 
(@a, 0) become nodes, then merge with the 
saddles (t)a, 0) and ((I,, 0) , respectively, 
and vanish through composite eq~~brium 
states of the “saddle-node“ type (Fig. I). 

The investigation made permits the fol- 
lowing conclusions: (a) under the condi- 
tions (1) and (2) indicated the swinging of 

a synchronous machine’s rotor can be appro- 
ximately described by the equation of mech- 
anical motion of the rotor, in which is used 
the expression for the electromechanical 
moment, obtained for constant spin rate of 
the rotor: (b) a selfoscillation of the rotor is 
possible only in the presence of ohmic 1OSSeS 

in the stator circuit. 
In conclusion the authors acknowledge Iu. I. Neimark for discussing the paper and for 

valuable advice. 
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We propose the use of the Bubnov-Galerkin procedure to the search for self- 

oscillations. We establish the existence and the convergence of the approxi- 

mations. In the basic case we have obtained the asymptotics of the rate of 

convergence. In [l] it was shown, on the basis of the results in [ 21, how we 
can construct finite-dimensional approximations to the periodic solutions of 
autonomous systems. Below we have pointed out another approach to solving 
the approximation problem, based on the parameter functionalization method 

proposed in [3]. 

1. We first consider an autonomous system of ordinary differential equations 

dxldt = f (5) (x E R”) (1.1) 

where f is a continuously differentiable mapping of a region G c R* into R”. We 
assume that in region G system (1.1) has an isolated cycle r whose smallest positive 
period is oa. Let z,E r and let X* (t) be the solution of system (1.1) with the ini- 
tial condition ~0 at t = 0. We assume cycle I’ to be simp1e.i.e. unity is a simple 
eigenvalue of the translation operator at time oa along the trajectories of the variational 
system 


